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Abstract

This study presents the first full-scale experiment to verify the effectiveness of the probabilistic approach to distinguish

between the interior pressures that are induced from independent sources within a room. This study furthers the theoretical

work of a companion paper in which no experimental verification was conducted and the number of interior sources was

assumed to be known in the parameter identification process. The two main contributions of this paper are (1) the

development of a model class selection index that can indicate the number of interior sources and (2) the experimental

verification of the probabilistic approach.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Interior acoustics is very important for all big cities, including Hong Kong, because they have many noise
problems. Acoustic experts are required to distinguish the independent noise sources to determine whether the
noise that is generated by a particular machine exceeds an established limit in order to design suitable
mitigation measures for each noise source. There is no well-established method to solve this acoustic problem.
The companion paper [1] introduced a theoretical model that uses the probabilistic approach to distinguish
between the interior pressures, which are induced from independent sources within a room, but no experiment
was conducted to prove its validity. One drawback of the study [1] is that the number of interior sources was
assumed to be given in the parameter identification process, or, the idea of a model class selection was not
adopted. Lee et al. [2] recently presented a theoretical simulation to identify the sound leakages on a wall of an
enclosed room using the same probabilistic approach. Similar to that of Ref. [1], the drawback of their study
was that the number of leakages was assumed to be known in the parameter identification process.
ee front matter r 2008 Elsevier Ltd. All rights reserved.

v.2008.03.053

ing author. Tel.: +852 2788 9847; fax: +852 2788 7612.

ess: bcraylee@cityu.edu.hk (Y.Y. Lee).

www.elsevier.com/locate/jsvi
dx.doi.org/10.1016/j.jsv.2008.03.053
mailto:bcraylee@cityu.edu.hk


ARTICLE IN PRESS
Y.Y. Lee et al. / Journal of Sound and Vibration 317 (2008) 646–656 647
Although probabilistic analysis has been in use for a long time, the Bayesian method for model comparison
has only recently been developed in depth. This is referred to as model class selection in the literature. In 1992,
Mackay [3] was the first to investigate the Bayesian approach to regularization and model comparison (model
class selection) and used the inference problem of interpolating noisy data. In his study, models were ranked
by evaluating the evidence, a solely data-dependent measure that intuitively and consistently combines a
model’s ability to fit the data with its complexity. Recently, Beck and Yuen [4] presented a Bayesian
probabilistic approach for selecting the most plausible class of models for a structural or mechanical system
within a specified set of model classes, based on system response data. The basis of the approach is to rank the
classes of models based on their probabilities conditional on the response data that can be calculated based on
Bayes’ theorem and an asymptotic expansion of the evidence for each model class. The two aforementioned
approaches are mainly used for system identification in structural engineering, and have never been applied to
interior acoustic problems. This paper introduces a probabilistic system identification method combined with
model class selection to solve interior acoustic problems.
2. Theory

2.1. Acoustic model

The acoustic models in the companion paper [1] and other Refs. [5–7] consider only rectangular rooms.
Hence, this paper considers practical and non-rectangular cases. The complex acoustic pressure p(x, y, z)
within a non-rectangular room is described by the frequency domain acoustic wave equation [8]

ðr2 þ k2
Þpðx; y; zÞ ¼ �jr0oqðx0; y0; z0Þ, (1)

where k and o are the wavenumber and angular velocity of the sound waves, j ¼
ffiffiffiffiffiffiffi
�1
p

, r0 the air density, and
p(x, y, z) the acoustic pressure at the position of (x, y, z) in the Cartesian coordinates, as shown in Fig. 1. Note
that if a ¼ 0 and b ¼ Ly, the model is rectangular. q(x0, y0, z0) is the source strength at (x0, y0, z0), which
describes the volume velocity per unit volume.

If the acoustic pressure field is described by the trial solution p̂ðx; y; zÞ, the residual of Eq. (1) can be
defined as

Rðp̂ðx; y; zÞÞ ¼ ðr2 þ k2
Þp̂ðx; y; zÞ þ jr0oqðx0; y0; z0Þ. (2)

A set of shape functions fJ(x,y,z), where J ¼ 1; 2; . . . ; J̄ may now be selected to represent the spatial
variation of the pressure field. The trial solution is expressed as

p̂ðx; y; zÞ ¼
XJ̄

J¼1

PJfJðx; y; zÞ, (3)
x

y
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Fig. 1. Iso view and top view of a non-rectangular room.
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where fJ(x,y,z) is the Jth shape function that satisfies the geometrical boundary conditions (see
Eqs. (4a)–(4d)), PJ is the unknown modal amplitude of the Jth shape function, and J̄ is the number of
modes that retained in the modal decomposition:

qf
qx

����
x¼0;0pypb

¼
qf
qx

����
x¼Lx

¼ 0;
qf
qy

����
y¼0

¼
qf
qy

����
y¼Ly;apxpLx

¼ 0 (4a,b)

qf
qz

����
z¼0

¼
qf
qz

����
z¼Lz

¼ 0;
qf
qy0

����
0pxpa;bpypLy

¼ 0, (4c,d)

where (x0, y0) are the local coordinates in Fig. 1:

fJ ¼ cos
lpx

Lx

cos
mpy

Ly

cos
npz

Lz

cos
l0pðaðy� bÞ � ðLy � bÞxÞ

ðLx � aÞðLy � bÞ þ aLy

(4e)

where l, m, n, and l are integers. fJ is a function that can satisfy the boundary conditions in Eqs. (4a)–(4d).
Using the Galerkin approach [5], the weighted residual in Eq. (2) is set to zero:Z

V

fJRðp̂ðx; y; zÞÞdv ¼ 0 (5a)

or Z
V

fJr
2p̂dvþ k2

Z
V

fJ p̂dvþ jr0o
Z

V

fJqdv ¼ 0. (5b)

According to the gradient theorem [5], the first term on the left-hand side of Eq. (5b) can be expressed asZ
V

fJr
2p̂dv ¼

Z
V

p̂r2fJ dvþ

Z
A

fJ

qp̂

qn
ds�

Z
A

qfJ

qn
p̂ds, (6)

where V and A represent the volume and the surface area of the room.
Substituting Eq. (6) into Eq. (5b) givesZ

V

p̂r2fJ dvþ

Z
A

fJ

qp̂

qn
ds�

Z
A

qfI

qn
p̂dsþ k2

Z
V

fJ p̂ dvþ jr0o
Z

V

fJqdv ¼ 0. (7)

From Eq. (7), J̄ equations can be set up for J ¼ 1 to J̄, and used for solving the J̄ unknown modal
amplitude PJ in Eq. (3). Then, the corresponding sound pressure in the time domain can be derived using the
inverse Fourier transform method [9]. If K̄ point sound sources exist within the room, the last term in Eq. (7)
can be given by

jr0o
Z

V

fI qdv ¼ jr0o
XK̄

K¼1

QKfJðxK ; yK ; zK Þ, (8)

where (xK, yK, zK) is the coordinate of the Kth sound sources, and QK is the source strengths. Note that by
setting the source strength equal to zero, the solution of Eq. (7) is a set of eigenvalues representing the cavity
resonant frequencies.

The sound pressure level in dB scale that is due to the Kth source at a particular measurement location is
defined by

SPLK ¼ 10 log
p̂K ðx; y; zÞ

pref

� �2

, (9)

where pref is the reference pressure ¼ 2� 10�5 Pa.

2.2. Bayesian approach

The proposed probabilistic approach, which was originally employed in structural model updating and
damage detection, was recently employed in Refs. [1,2] for system identification of interior acoustic problems.
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The probabilistic approach is briefly described as follows. We define h ¼ {aTs}T as the uncertain parameter
vector to be updated, where a contains the sound source strength and the modal vibration amplitudes, and s
represents the prediction error and it is the uncertain parameter of the probabilistic model h 2 SðhÞ � RNaþ1,
where Na is the dimension of the uncertain parameter vector a. The posterior marginal probability density
function (PDF) of the unknown parameters a can be given by

pðajDN ;MK̄ Þ ¼

Z 1
0

cpðDN ja;s;MK̄ Þds, (10)

where DN is the set of measured sound pressure data, MK̄ the acoustic model that is described in the previous
section, and c the normalizing constant. The term pðDN ja; s;MK̄ Þ in Eq. (10) is given by

pðDN ja; s;MK̄ Þ ¼
1

ð
ffiffiffiffiffiffi
2p
p

sÞNNO
exp �

1

2s2
XN

t¼1

jjp̂ðtÞ � pðt; aÞjj2
" #

, (11)

where NO is the number of measurement stations, N the number of measured time steps at each measurement
location, (t) the vector of measured sound pressures at the tth time step, p(t;a) the vector of calculated sound
pressures that is based on the model MK for the given set of uncertain parameters a, and || � || the usual
Euclidean norm of a vector.

Hence, the posterior PDF for a particular uncertain parameter a* is given by

pðanjDN ;MK̄ Þ ¼

Z
Sða0Þ

pðajDN ;MK̄ Þda
0, (12)

where a0 is the uncertain parameter vector that excludes a*, and S(a0) is the predefined domain of a0.
Model updating problems in such situations can be classified as identifiable cases [10,11]. When the number

N is not large or the location of the measurement station is not informative, it is possible for model updating
problems to fall into the category of unidentifiable cases. It must be pointed out that the treatment of model
updating problems in unidentifiable cases is much more complex than that in identifiable cases.

2.3. Model class selection index

In Bayesian system identification, one aims not only to identify the values of the uncertainties in the model,
but also to find the best (optimal) model in a specified class of models [4,12]. The number of parameters may
not be certain and is also predicted or identified. In the current study, the number of point sources is unknown,
which directly affects model class selection. Hence, a model class selection index is defined to evaluate a model
class with K̄ point sound sources:

IK̄ ¼

R
SðaÞ

pðajDN ;MK̄ Þda

SðaÞ
. (13)

The index in Eq. (13) is defined proportional to the integration of the PDF with respect to the uncertain
parameters, and normalized so that the maximum value is equal to one. It can be seen that a higher index
value implies a higher probability of the number of sources equal to K̄.

3. Experiment

The acoustic experiment was carried out in Hong Kong in the laboratory of Acoustics and Air Testing
Laboratory Co. Ltd. The experimental setup is shown in Fig. 2. Experimental cases of one and two sound
sources were carried out. Two loudspeakers, S1 and S2, were employed and set at (3.39, 2.79, and 0.335m) and
(2.69, 1.6, and 0.3875m), respectively. Note that (1) S2 was off for the case of one source and (2) when the
sound contribution from one of the two loudspeakers to a particular location was measured in the case of two
sources, the other loudspeaker was off. Two microphones (B&K type 4188), M1 and M2, to measure the
acoustic responses were placed at (4.79, 1.0, and 1.04m) and (4.79, 2.19, and 0.90m), respectively. The walls,
floor, and ceiling of the room are acoustically rigid. Random white noise signals that were the input data in the
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Fig. 2. Setup of the full-scale experiment.
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system identification process and generated by a multianalyzer system (PULSETM type 3560c) were input into
loudspeakers S1 and S2, and monitored by a PC. The lower and upper cut-off frequencies of the loudspeakers
were 65 and 115Hz, respectively. Sound signals of 2 s that were measured by the microphones at a time step of
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0.9766ms were recorded via the PULSE software, and stored on the PC. Photos of the loudspeaker, PC,
frequency analyzer, microphone, and enclosed room can be found in Fig. 2.

4. Results

Tables 1a and b show the identification results in the experimental cases of one and two sound sources. The
first 64 acoustic modes are considered in the Bayesian models. The non-zero acoustic resonant frequencies of
the first and last modes are 26.4 and 114.2Hz. Figs. 3a and b show the mode convergence studies of the cases
that are marked with ‘‘+’’ in Table 1b. It can be seen that a reasonably convergent solution of the uncertain
parameters can be obtained using at least the first 64 acoustic modes in the Bayesian model. As the number of
sound sources is unknown in the identification process, the identification results from the models that consider
different numbers of sound sources are evaluated. As the source strengths (flow volume per second) could not
be measured accurately in the experiment, they are not shown in Tables 1a and 1b. The models with the
correct number of sources give reasonably accurate identifications of the uncertain parameters. The maximum
distance error is 0.57 that is acceptable when considering the room dimensions of 6.49m� 3.79m� 3.29m.
The PDFs of the uncertain parameters show a crisp peak within the domain that is considered (see Figs. 4a
and b and 5c–e). The PDFs are obtained from Eq. (12). The optimal parameter values are the values of highest
Table 1a

Identification results of the one-source experiment

True values

(S1x, S1y, S1z) ¼ (3.39, 2.79, 0.335)m

No. of sound sources considered in the acoustic model Three sound sources Two sound sources One sound source

Identified values

(Q1, Q2, Q3) (� 10�3m3/s) (2.6619, 0.0424, 0.001) (2.7408, �0.4838, N/A)c (2.6926, N/A, N/A)a

(S1x, S1y, S1z) (m) (3.6082, 2.5072, 0.5308) (3.6386, 2.5587, 0.5144)d (3.6703, 2.5090, 0.3597)b

(S2x, S2y, S2z) (m) Unidentifiable Unidentifiablee N/A

(S3x, S3y, S3z) (m) Unidentifiable N/A N/A

Distance error

(S1x, S1y, S1z) (m) 0.41 0.38 0.40

a–eSee Figs. 4a–e for the corresponding normalized PDFs.

Table 1b

Identification results of the two-source experiment

True values

(S1x, S1y, S1z) ¼ (3.39, 2.79, 0.335)m; (S1x, S1y, S1z) ¼ (2.69, 1.60, 0.3875)m

No. of sound sources considered in the acoustic model Three sound sources Two sound sources One sound source

Identified values

(Q1, Q2, Q3) (� 10�3m3/s) (2.7195, 1.7518, 0.073) (2.6734, 1.8131, N/A)c,f (3.1107, N/A, N/A)a

(S1x, S1y, S1z) (m) (3.4874, 3.3262, 0.5468) (3.4918, 3.1384, 0.5415)d,f Unidentifiableb

(S2x, S2y, S2z) (m) (2.3256, 1.3324, 0.5141) (2.2132, 1.3015, 0.4961)e,f N/A

(S3x, S3y, S3z) (m) Unidentifiable N/A N/A

Distance error

(S1x, S1y, S1z) (m) 0.58 0.42 N/A

(S2x, S2y, S2z) (m) 0.55 0.57 N/A

a–eSee Figs. 5a–e for the normalized PDFs.
fSee Figs. 3a and b for the convergences.
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probability density. Note that to present the three-dimensional plots, only two independent variables are
selected (i.e., Sx and Sy). The models in which the numbers of sound sources are larger than the true values can
give reasonable predictions of the true sound source locations. The locations of the inexistent sound sources
are unidentifiable due to modeling error (see Fig. 4e for the PDF of the case that is marked with ‘‘e’’ in
Table 1a). No peak can be found in the PDF plot of the inexistent source locations within the domain that is
considered. The other uncertain parameters, such as source strengths and existent source locations, are
all identifiable, and their corresponding PDFs show a crisp peak within the domain that is considered
(see Figs. 4c and d). The maximum distance error of these models is 0.58m, which is close to that of the models
with the correct number of sources. The model in which the number of sound sources is smaller than the true
value cannot crisply identify the sound location and gives an unidentifiable result, according to the definition
in Ref. [10]. In Fig. 5b, two peaks are found on the PDF, which is different from the nearly flat surface of the
other unidentifiable case in Fig. 4e. The other uncertain parameter (i.e., source strength) is identifiable, and its
corresponding PDF in Fig. 5a shows a crisp peak within the domain that is considered. In general, the distance
error in the two-source experiment is larger than that in the one-source experiment due to the greater number
of parameters that are considered in the identification process.

According to Refs. [1,2], unidentifiable cases can occur due to several factors, such as measurement noise,
modal truncation, and measurement on a nodal line. Therefore, it is not possible to conclude that the number
of sound sources that is employed in the identification process is wrong when the results of updating are



ARTICLE IN PRESS

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

The location at the highest probability density 

= (3.6703m, 2.5090m) 

 S1z = 0.3597m

N
or

m
al

iz
ed

 p
ro

ba
bi

lit
y 

de
ns

ity
 

N
or

m
al

iz
ed

 p
ro

ba
bi

lit
y 

de
ns

ity
 

The strength at the highest probability density 

= 2.6926 ×10-3m3/s 

The strengths at the highest probability density 

= (2.7408, -0.4838) ×10-3 m3/s

N
or

m
al

iz
ed

 p
ro

ba
bi

lit
y 

de
ns

ity
 

The location at the highest probability density 

= (3.6386m, 2.5587m) 

 S1z = 0.5144m

N
or

m
al

iz
ed

 p
ro

ba
bi

lit
y 

de
ns

ity
 

N
or

m
al

iz
ed

 p
ro

ba
bi

lit
y 

de
ns

ity
 

Source strength, Q1 (×10-3 m3/s)

Q
1  (×10 -3 m 3/s) Q2 (×

10-3 m
3/s)

S
1x  (m)

S1y (m
)

S
1x  (m)

S1y (m
)

S2x (m)
S 2y 

(m
)

Fig. 4. (a) Normalized probability density vs. the source strength (one source in the experiment, one source in the model). (b) Normalized

probability density vs. the source location (one source in the experiment, one source in the model). (c) Normalized probability density vs.

the source strengths (one source in the experiment, two sources in the model). (d) Normalized probability density vs. the first source

location (one source in the experiment, two sources in the model). (e) Normalized probability density vs. the second source location (one

source in experiment, two sources in the model).

Y.Y. Lee et al. / Journal of Sound and Vibration 317 (2008) 646–656 653
unidentifiable. Thus, the newly developed model class selection index in Eq. (13) is extremely important in
selecting the best model class based on the set of experimental data to identify the number of sound sources.
Figs. 6a and b clearly show that the index values of the one- and two-source model classes are the highest in
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the experimental cases of one and two sources, respectively. The model class with the highest index is the best
model class based on the set of experimental data, and its corresponding number of sound sources is defined in
the proposed method as the true number. The experimental verification clearly shows that the index that is
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Table 2

Sound pressure contributions (two sound sources)

From S1 (dB) From S2 (dB) Total (dB)

At M1

True value 88.0 83.4 88.9

Predicted 86.9 83.8 88.3

At M2

True value 90.3 85.4 91.2

Predicted 89.2 84.4 90.3

Y.Y. Lee et al. / Journal of Sound and Vibration 317 (2008) 646–656 655
defined in Eq. (13), which is the main contribution of this study, is a valid indicator for identifying the number
of sound sources. Based on the results in Fig. 6b, the Bayesian model with two sound sources is used for
distinguishing between the sound pressure levels in the case of two sound sources. Table 2 shows a comparison
between the identified and true sound pressure levels that are contributed by the two sound sources. The
Bayesian identifications agree reasonably with the measurements at the two locations.
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5. Conclusions

This study presented experimental verification of the effectiveness of the application of the proposed
probabilistic method to sound contribution identification. The identification results of the experiments in
which the number of sound sources is unknown show that the model class selection index can be used to
identify the model class that best fits the measured data to identify the number of sound sources. With the aid
of the model class selection index, the best Bayesian model is selected for the identification process. The
uncertain model parameters of the selected model class are identifiable, and the predictions of the sound
source contributions to a particular location are reasonably accurate.

6. Further work

The present probabilistic method is valid only for the interior acoustic problems that the noise sources are
placed within the room. Further validations for other interior acoustic problems that the noise sources are
placed outside the room are also very important. It is because there are many noise complaints in Hong Kong,
in which the noise sources are exterior. It is expected that the successful validations can show the present
probabilistic method useful for solving more acoustic problems
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